Show HN: EnrichMCP – A Python ORM for Agents

Jun 19, 2025 - 20:30
 0  0
Show HN: EnrichMCP – A Python ORM for Agents

EnrichMCP

The ORM for AI Agents - Turn your data model into a semantic MCP layer

EnrichMCP is a Python framework that helps AI agents understand and navigate your data. Built on MCP (Model Context Protocol), it adds a semantic layer that turns your data model into typed, discoverable tools - like an ORM for AI.

What is EnrichMCP?

Think of it as SQLAlchemy for AI agents. EnrichMCP automatically:

  • Generates typed tools from your data models
  • Handles relationships between entities (users → orders → products)
  • Provides schema discovery so AI agents understand your data structure
  • Validates all inputs/outputs with Pydantic models
  • Works with any backend - databases, APIs, or custom logic

Installation

pip install enrichmcp

# With SQLAlchemy support
pip install enrichmcp[sqlalchemy]

Show Me Code

Option 1: I Have SQLAlchemy Models (30 seconds)

Transform your existing SQLAlchemy models into an AI-navigable API:

from enrichmcp import EnrichMCP
from enrichmcp.sqlalchemy import include_sqlalchemy_models, sqlalchemy_lifespan, EnrichSQLAlchemyMixin
from sqlalchemy.ext.asyncio import create_async_engine
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column, relationship

engine = create_async_engine("postgresql+asyncpg://user:pass@localhost/db")

# Add the mixin to your declarative base
class Base(DeclarativeBase, EnrichSQLAlchemyMixin):
    pass

class User(Base):
    __tablename__ = "users"

    id: Mapped[int] = mapped_column(primary_key=True)
    email: Mapped[str] = mapped_column(unique=True)
    status: Mapped[str] = mapped_column(default="active")
    orders: Mapped[list["Order"]] = relationship(back_populates="user")

class Order(Base):
    __tablename__ = "orders"

    id: Mapped[int] = mapped_column(primary_key=True)
    user_id: Mapped[int] = mapped_column(ForeignKey("users.id"))
    total: Mapped[float] = mapped_column()
    user: Mapped[User] = relationship(back_populates="orders")

# That's it! Create your MCP app
app = EnrichMCP(
    "E-commerce Data",
    lifespan=sqlalchemy_lifespan(Base, engine, cleanup_db_file=True),
)
include_sqlalchemy_models(app, Base)

if __name__ == "__main__":
    app.run()

AI agents can now:

  • explore_data_model() - understand your entire schema
  • list_users(status='active') - query with filters
  • get_user(id=123) - fetch specific records
  • Navigate relationships: user.ordersorder.user

Option 2: I Have REST APIs (2 minutes)

Wrap your existing APIs with semantic understanding:

from enrichmcp import EnrichMCP, EnrichModel, Relationship
from pydantic import Field

app = EnrichMCP("API Gateway")

@app.entity
class Customer(EnrichModel):
    """Customer in our CRM system."""

    id: int = Field(description="Unique customer ID")
    email: str = Field(description="Primary contact email")
    tier: str = Field(description="Subscription tier: free, pro, enterprise")

    # Define navigable relationships
    orders: list["Order"] = Relationship(description="Customer's purchase history")

@app.entity
class Order(EnrichModel):
    """Customer order from our e-commerce platform."""

    id: int = Field(description="Order ID")
    customer_id: int = Field(description="Associated customer")
    total: float = Field(description="Order total in USD")
    status: str = Field(description="Order status: pending, shipped, delivered")

    customer: Customer = Relationship(description="Customer who placed this order")

# Define how to fetch data
@app.resource
async def get_customer(customer_id: int) -> Customer:
    """Fetch customer from CRM API."""
    response = await http.get(f"/api/customers/{customer_id}")
    return Customer(**response.json())

# Define relationship resolvers
@Customer.orders.resolver
async def get_customer_orders(customer_id: int) -> list[Order]:
    """Fetch orders for a customer."""
    response = await http.get(f"/api/customers/{customer_id}/orders")
    return [Order(**order) for order in response.json()]

app.run()

Option 3: I Want Full Control (5 minutes)

Build a complete data layer with custom logic:

from enrichmcp import EnrichMCP, EnrichModel, Relationship, EnrichContext
from datetime import datetime
from decimal import Decimal

app = EnrichMCP("Analytics Platform")

@app.entity
class User(EnrichModel):
    """User with computed analytics fields."""

    id: int = Field(description="User ID")
    email: str = Field(description="Contact email")
    created_at: datetime = Field(description="Registration date")

    # Computed fields
    lifetime_value: Decimal = Field(description="Total revenue from user")
    churn_risk: float = Field(description="ML-predicted churn probability 0-1")

    # Relationships
    orders: list["Order"] = Relationship(description="Purchase history")
    segments: list["Segment"] = Relationship(description="Marketing segments")

@app.entity
class Segment(EnrichModel):
    """Dynamic user segment for marketing."""

    name: str = Field(description="Segment name")
    criteria: dict = Field(description="Segment criteria")
    users: list[User] = Relationship(description="Users in this segment")

# Complex resource with business logic
@app.resource
async def find_high_value_at_risk_users(
    lifetime_value_min: Decimal = 1000,
    churn_risk_min: float = 0.7,
    limit: int = 100
) -> list[User]:
    """Find valuable customers likely to churn."""
    users = await db.query(
        """
        SELECT * FROM users
        WHERE lifetime_value >= ? AND churn_risk >= ?
        ORDER BY lifetime_value DESC
        LIMIT ?
        """,
        lifetime_value_min, churn_risk_min, limit
    )
    return [User(**u) for u in users]

# Async computed field resolver
@User.lifetime_value.resolver
async def calculate_lifetime_value(user_id: int) -> Decimal:
    """Calculate total revenue from user's orders."""
    total = await db.query_single(
        "SELECT SUM(total) FROM orders WHERE user_id = ?",
        user_id
    )
    return Decimal(str(total or 0))

# ML-powered field
@User.churn_risk.resolver
async def predict_churn_risk(user_id: int, context: EnrichContext) -> float:
    """Run churn prediction model."""
    features = await gather_user_features(user_id)
    model = context.get("ml_models")["churn"]
    return float(model.predict_proba(features)[0][1])

app.run()

Key Features

🔍 Automatic Schema Discovery

AI agents explore your entire data model with one call:

schema = await explore_data_model()
# Returns complete schema with entities, fields, types, and relationships

🔗 Relationship Navigation

Define relationships once, AI agents traverse naturally:

# AI can navigate: user → orders → products → categories
user = await get_user(123)
orders = await user.orders()  # Automatic resolver
products = await orders[0].products()

🛡️ Type Safety & Validation

Full Pydantic validation on every interaction:

@app.entity
class Order(EnrichModel):
    total: float = Field(ge=0, description="Must be positive")
    email: EmailStr = Field(description="Customer email")
    status: Literal["pending", "shipped", "delivered"]

✏️ Mutability & CRUD

Fields are immutable by default. Mark them as mutable and use auto-generated patch models for updates:

@app.entity
class Customer(EnrichModel):
    id: int = Field(description="ID")
    email: str = Field(mutable=True, description="Email")

@app.create
async def create_customer(email: str) -> Customer:
    ...

@app.update
async def update_customer(cid: int, patch: Customer.PatchModel) -> Customer:
    ...

@app.delete
async def delete_customer(cid: int) -> bool:
    ...

📄 Pagination Built-in

Handle large datasets elegantly:

from enrichmcp import PageResult

@app.resource
async def list_orders(
    page: int = 1,
    page_size: int = 50
) -> PageResult[Order]:
    orders, total = await db.get_orders_page(page, page_size)
    return PageResult.create(
        items=orders,
        page=page,
        page_size=page_size,
        total_items=total
    )

See the Pagination Guide for more examples.

🔐 Context & Authentication

Pass auth, database connections, or any context:

@app.resource
async def get_user_profile(user_id: int, context: EnrichContext) -> UserProfile:
    # Access context provided by MCP client
    auth_user = context.get("authenticated_user_id")
    if auth_user != user_id:
        raise PermissionError("Can only access your own profile")
    return await db.get_profile(user_id)

Why EnrichMCP?

EnrichMCP adds three critical layers on top of MCP:

  1. Semantic Layer - AI agents understand what your data means, not just its structure
  2. Data Layer - Type-safe models with validation and relationships
  3. Control Layer - Authentication, pagination, and business logic

The result: AI agents can work with your data as naturally as a developer using an ORM.

Examples

Check out the examples directory:

Documentation

Contributing

We welcome contributions! See CONTRIBUTING.md for details.

License

Apache 2.0 - See LICENSE


Built by FeatureformMCP Protocol

What's Your Reaction?

Like Like 0
Dislike Dislike 0
Love Love 0
Funny Funny 0
Angry Angry 0
Sad Sad 0
Wow Wow 0